
Motion Planning for Bipedal Robots
Aseem Saxena

Oregon State University
Mohitvishnu Gadde

Oregon State University
Ashish Malik

Oregon State University

Abstract—Using Sim2Real reinforcement learning, [1] has been
able to demonstrate robust bipedal gaits such as standing,
walking, hopping, running etc on bipedal robot Cassie. However,
real world applications require robot autonomy above the level
of heading velocity and direction to achieve meaningful goals.
Motion and path planning using learned behaviors is still an
open area of research in Robotics due to the computational
requirements of planning algorithms and rapid updates required
for real world applications. We tackle this problem for the Cassie
Robot on simulated terrains using the RRT* algorithm to rapidly
and reliable generate trajectory waypoints to reach the desired
goals. These waypoints and Cassie’s real-time pose are used by a
controller to set the policy targets which performs the lower level
locomotion behavior. We successfully demonstrate our system in
simulation in a number of challenging scenarios.

I. INTRODUCTION

Motion planning algorithms for robots have received
widespread attention from the robotics community over the last
couple of decades as robots gradually enter daily human lives.
Modern robots differ tremendously in their morphology, sensor
modalities, sizes, etc., but one thing which is common to all is
to solve the problem of navigation or to operate in a complex
environment. Broadly, the problem of motion planning is
concerned about producing a sequence of targets such as
control inputs, waypoints, sub-behaviors, etc for the robot to
reach a goal configuration from a starting configuration while
respecting the constraints put forward by the environment, or
robot’s morphology and configuration.

Previous research, on the bipedal robot - Cassie has pro-
duced various locomotion policies that can execute desired
forward velocity and turn rate commands on the robot, both
in simulation and in the real world [1]. However, these policies
require a continuous input of velocity and turn rate commands
to perform desired locomotion behaviors. In this work, we
develop an autonomous system to generate these commands
for the policy so as to meet a desired end-goal through
locomotion (reach the goal/target position). The complexity of
this work lies in two main domains: Computational complexity
of the planning algorithms and conversion of the planner’s
output to low level locomotion policy’s target. We mitigate the
first challenge by using the RRT* motion planning algorithms
to rapidly generate collision free waypoints. For the second
challenge, we design a controller that takes in the waypoint
and Cassie’s current pose information to generate the policy
targets. The controller autonomously decides to use a P
controller or a fixed turn rate command to generate the policy
targets based on the input information.

Fig. 1. An example unknown environment {A} highlighting the ob-
stacles, start position, goal position and the Cassie robot. The regions
O1, O2,Oi,Oj are the highlighted obstacles. The dotted line denotes
the shortest path from X0 (start point) to Xg (goal point). The yellow path
depicts a feasible path for Cassie to follow to avoid the obstacles to reach the
goal position.

II. RELATED WORKS

Research on motion planning began by formulating com-
plete planners for polygonal robots moving in an environment
with polygonal obstacles [2]. These algorithms suffered from
high computational complexity.

Work on cell decomposition methods [3], potential fields
[4] and roadmaps [5] heralded the onset of motion planning
algorithms which could be applied practically. But, these
algorithms suffered from intractability issues with high dimen-
sional state spaces.

The most recent successful planners in the last decade are
sampling based algorithms [6] [7]. Sampling based algorithms
build a roadmap by randomly sampling and connecting points
from an obstacle-free space in order to reason about the
connectivity of the starting and goal configurations. This
leads to computational savings since obstacles need not be
constructed in state space. Instead of completeness guarantees,
these algorithms offer probabilistic completeness guarantees,
in other words, as the number of samples reaches infinity, the
probability that the algorithm does not return a solution, when,
in fact, a solution exists, tends to 0.

In the class of sampling-based algorithms, two main sub-
types exist. Probabilistic Roadmaps (PRM) [7] and Rapidly-
exploring Random Trees [6].

PRMs [7] construct the roadmap graph first (containing
most of the collision free trajectories). Once the roadmap is
constructed, a path can be found by computing the shortest

Fig. 2. Pictorial representation of the expand procedure in RRT* [14]

path in the graph from the start to goal configuration. One
issue with PRMs is that the roadmap construction step could
be computationally prohibitive.

To address concerns with PRMs, incremental sampling-
based planning algorithms [6] such as RRT [8] have emerged
as an online alternative. Due to their incremental nature, they
can terminate as soon as a solution is foound as opposed
to PRMs. Slight changes in the environment do not warrant
planning from scratch since most trajectories are still collision
free.

RRT has nice theoretical guarantees and can work reliably
with discrete/continuous systems having non holonomic con-
straints, non linear dynamics and differential constraints.

The general formulation of the motion planning problem
doesn’t take into account the ’distance’ or ’cost’ of a solution.
Various heuristics have been proposed to modify RRT in order
to get ’better’ solutions.

In [9], The authors prove that RRT almost always returns
a sub-optimal solution and RRT* is asymptotically optimal.
The authors also show that RRT* has the same computational
complexity as RRT.

III. RRT* ALGORITHM

We will define the sub-procedures used by RRT* before we
describe the algorithm.

• Sampling: The function Sample returns independent and
identically distributed (i.i.d) samples from Xfree (points
lying outside the obstacle space).

• Steering: given two points x and y, the function Steer
returns z which is closer to y than x. The distance metric
is usually a Euclidean Norm.

• Nearest Neighbor: For a given graph G = (V,E) and
x both part of Xfree, the function Nearest returns the
vertex V in G which is closest to x.

• Near Vertices: Similar to Nearest, Near returns the n
closest vertices in graph G closest to x.

• Collision Test: given two points x and x′ in Xfree, the
function ObstacleFree returns true if and only if the line
segment connecting x and x′ lies in Xfree.

• Parent: given a vertex v, the function Parent returns its
unique parent v′ in the tree.

RRT* starts from a graph with only the starting position
vertex and no edges. Then it incrementally grows a graph in
Xfree by sampling a point xrand and extending the graph

towards it. The way it does this is by connecting a new vertex
to the point which incurs minimum cost in the set Xnear. It
then connects the new vertex to all the vertices in Xnear to
adjust the tree. The algorithm of RRT* is put down below
from the original paper [9] for comprehensive understanding.

Algorithm 1: Body of RRT Algorithm

V ← {xinit}; E ← ∅; i← 0;
while i < N do

G← (V,E);
xrand ← Sample(i); i← i+ 1;
(V,E)← Extend(G, xrand);

Algorithm 2: Extend RRT ∗

V ′ ← V ; E′ ← E;
xnearest ← Nearest(G, x);
xnew ← Steer(xnearest, x);
if ObstacleFree(xnearest, xnew) then

V ′ ← V ′ ∪ {xnew};
xmin ← xnearest;
Xnear ← (G, xnew, |V |);
for all xnear ∈ Xnear do

if ObstacleFree(xnear, xnew) then
c′ ← Cost(xnear) + c(Line(xnear, xnew));
if c′ < Cost(xnew) then

xmin ← xnear;

E′ ← E′ ∪ {(xmin, xnew)};
for all xnear ∈ Xnear \ {xmin} do

if ObstacleFree(xnew, xnear) and
Cost(xnear) >
Cost(xnew) + c(Line(xnew, xnear)) then

xparent ← Parent(xnear);
E′ ← E′ \ {(xparent, xnear)};
E′ ← E′ ∪ {(xnew, xnear)};

return G′ = (V ′, E′)

IV. LOCOMOTION FOR CASSIE

The work [1] presents a principled way to design reward
functions that implicitly capture all periodic bipedal locomo-
tion gaits. The work is motivated by the observation that
all periodic gaits can by defined by swing (foot in the air)
and stance (foot on the ground) phases, and relative ratio of
the stance and the swing phases. The phases differ in the
presence/absence of foot forces and velocities.

The reward function enables the robot to learn to raise
their feet by penalizing forces during swing phase and pe-
nalizing velocities during stance phase. Through command
randomization during the learning phase, this allows the agent
to learn different locomotion behaviors. These behaviors can
be composed appropriately to quickly and flexibly adapt to
changing environment conditions.

Fig. 3. System Diagram of [1]

The locomotion policies are parameterized using LSTM
[10] neural networks that offer an internal memory. This
internal memory serves to improve sim2Real performance, and
smooth switching of the locomotion behaviours.

V. METHODOLOGY

We do all our experiments in simulation on the MuJoCo
simulation environment [11]. Our code runs on a laptop with
a Core i7-8th Gen processor, 16GB RAM and the NVIDIA
GeForce MX150 GPU (2GB VRAM). Our implementation
was tested on Ubuntu 20.04 OS.

Our environments are procedurally generated by randomly
sampling different cuboids of varying sizes at randomized
locations and randomly spawning Cassie and the goal location.
We ensure that we spawn Cassie and the goal in the free region
to avoid impossible scenarios.

We break down the motion planning problem into two
parts. Firstly, we use the RRT* algorithm to generate the next
waypoint to reach in the free space. We design a simple yet
effective Waypoint Controller which enables the robot to reach
the next waypoint.

The waypoint to policy’s target controller uses Cassie’s
current pose and next waypoint location as input. It first
matches Cassie’e heading direction towards the next waypoint
(geodesic line between the current location and next way-
point’s location). This is important as the RRT* ensures that
the shortest path between the current robot position and the
next waypoint is obstacle free. However, no such guarantees
can be made for the other possible paths with the same starting
and ending positions. Therefore, we wish to follow the shortest
path as close as possible. When the error in the orientation is
less than a fixed threshold, the controller commands a fixed
forward velocity and an turn rate that is proportional to the
error between the desired orientation and current orientation.
This proportional component to control heading direction is
essential as the policy, which being incredibly stable isn’t
absolutely reliable. So the second component ensures that

Fig. 4. System Diagram of our approach

the errors do not accrue into large deviations in the actual
vs desired path to the waypoint. Once the robot successfully
reaches the waypoint, RRT* is invoked again for retrieve the
next waypoint towards the goal.

Proportional control [12] is a linear feedback control system
wherein a correction is applied to the control input at all times.
The correction is proportional to the difference of the desired
input and the actual input. A drawback of P Control is that it
cannot completely remove the error between the desired and
actual input. P Control is mathematically expressed as

Pout(t) = Kp ∗ (SP − PV)(t) + p0(t) (1)

where p0 refers to the controller input without any error, SP
(desired input) - PV (actual input) being the instanteneous
error at time t. Kp being a proportional term which is tuned
manually to get good convergence. Pout is the output of the
Proportional Controller. In our case, we have two P controllers,
one for orientation and one for position.

VI. RESULTS

We record qualitative demonstrations of Cassie successfully
reaching the desired location Link1 Link2. We notice that
cassie is successfully able to navigate narrow gaps in order
to reach the goal which is interesting.

We wish to improve on certain aspects of our framework.
The default velocity set for cassie to move is set conservatively,
we noticed that our P controller cannot converge for higher ve-
locities, this necessitates the need to design more sophisticated
controllers like PID controllers [15] in the future.

The underlying python implementation of RRT* could be
improved to run faster by leveraging Parallel computing.

https://docs.google.com/file/d/1NxSdWcU353G3LGTl-mwutAWSDl-p_mpu/preview
https://docs.google.com/file/d/1z0ITm8tgSRRo0c8TS7zFr4FUGRMAS_7e/preview

Fig. 5. Screenshot of cassie in the middle of reaching a waypoint(shown in
red), Final goal shown in green and obstacles are shown in grey.

Another way to improve its runtime is to implement it in
C/C++

The environments we created using simple 3d shapes are
sufficient to demonstrate the effectiveness of our approach but
do not correspond to how real world environments look like.
[13]

VII. CONCLUSION AND FUTURE WORK

This section describes the contributions, conclusions and
future work for the project.

- In this work we demonstrated goal reaching abilities in
randomly generated maps of the robot cassie in simula-
tion

- We showed how traditional motion planning algorithms
like RRT* produce reliable and reachable waypoints for
cassie to target.

- We demonstrated that a simple P controller is sufficient in
order to realize the desired motion albiet it adds additional
constraints on how the motion is performed.

Directions for future work include removing our reliance
on global information (known location and size of obstacles)
and perfect localization. We wish to mount and use a RGBD
camera on Cassie and decide what velocities and turn rates to
reach at each time step without making any collisions and with
the aim of reaching the goal in a sufficient amount of time.
Rendering and using more realistic simulation environments
[13] is also a viable and important future step in order to
ensure that our policies transfer well to the real world.

VIII. TEAM CONTRIBUTIONS

• Mohit: Research and implementation of the RRT* algo-
rithm, generating randomized obstacle maps in simulation
and extracting obstacle information for the RRT* algo-
rithm.

• Ashish: Design and testing of the controller in simula-
tion. Interfacing the RRT algorithm, simulation and the
controller to produce simulation demonstrations.

• Aseem: Setting up the simulation framework, Cassie’s
locomotion policy and visualization components of the
demonstrations.

ACKNOWLEDGMENT

We would thank Helei Duan, Jeremy Dao and Bikram
Pandit for their insightful comments and ideas.

REFERENCES

[1] Jonah Siekmann, Yesh Godse, Alan Fern, Jonathan Hurst, “Sim-to-
Real Learning of All Common Bipedal Gaits via Periodic Reward
Composition” 2021 IEEE International Conference on Robotics and
Automation (ICRA), 7309-7315.

[2] T. Lozano-Perez and M. A. Wesley. An algorithm for planning collision-
free paths among polyhedral obstacles. Communications of the ACM,
22(10):560–570, 1979.

[3] R. Brooks and T. Lozano-Perez. A subdivision algorithm in configura-
tion space for findpath with rotation. In International Joint Conference
on Artificial Intelligence, 1983.

[4] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. International Journal of Robotics Research, 5(1):90–98, 1986.

[5] Canny. The Complexity of Robot Motion Planning. MIT Press, 1988.
[6] L. Kavraki and J. Latombe. Randomized preprocessing of configuration

space for fast path planning. In IEEE International Conference on
Robotics and Automation, 1994.

[7] L.E. Kavraki, P. Svestka, J Latombe, and M.H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces.
IEEE Transactions on Robotics and Automation, 12(4):566–580, 1996.

[8] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning.
International Journal of Robotics Research, 20(5):378–400, May 2001.

[9] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” in Proc. Robotics: Science and Systems
(RSS), 2010.

[10] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory.
Neural Computation, 9(8), 1735–1780

[11] Todorov, Emanuel, Erez, Tom, and Tassa, Yuval. Mujoco: A physics
engine for model-based control. In Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on, pp. 5026–5033.
IEEE, 2012

[12] Proportional Control, Wikipedia Article, Link
[13] Savva, M., Kadian, A., Maksymets, O., Zhao, Y., Wijmans, E., Jain, B.,

Straub, J., Liu, J., Koltun, V., Malik, J., Parikh, D., and Batra, D. (2019).
Habitat: A Platform for Embodied AI Research. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV).

[14] Steven M. LaValle, Rapidly-Exploring Random Trees, 2001, Link
[15] Proportional Integral Derivative Controller, Wikipedia Article Link

https://en.wikipedia.org/wiki/Proportional_control
http://msl.cs.uiuc.edu/~lavalle/cs497_2001/book/iplan/node16.html
https://en.wikipedia.org/wiki/PID_controller

	Introduction
	Related Works
	RRT* Algorithm
	Locomotion for Cassie
	Methodology
	Results
	Conclusion and Future Work
	Team contributions
	References

