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Abstract

Reinforcement Learning requires the entire model of the world or interactive access
to the world. However, the world model may not be always known or it may
be expensive or unsafe to perform multiple interactions with the world. In such
scenarios, we would like to make use of existing transaction data to learn a control
policy. This is addressed by a class of algorithms referred to as "Offline Reinforce-
ment Learning". In this work, we study and implement "Behaviour Cloning"(BC),
"TD3" and a combination of both "TD3+BC" for offline reinforcement learning.
We evaluate them on various syntheic datasets and investigate the performance
of each of them on different qualities of datasets. We also attempt to use offline
RL for the real-world bipedal robot "Cassie" and introduce various datasets for a
bipedal locomotion task.

1 Introduction

Reinforcement learning has shown very promising results in sequential decision making problems
such as Chess, Go [22] and many other benchmarks [2]. This progress has been primarily accelerated
due to the advancement in reinforcement learning algorithms and the marriage of deep learning with
classic reinforcement learning [16]. An increase in the ease of access to simulators [2, 26], where
the learning agent does online training via interaction with the virtual world, has also contributed to
rapid advancement. However, agents trained in the virtual world are often times not transferable to
the real-world due to approximation errors between the simulator and real world. This has led to the
rise of algorithms that learn from a fixed dataset, collected by some arbitrary and possibly unknown
process in the real-world. These algorithms are referred to as Offline Reinforcement Learning (also
known as Batch Reinforcement Learning). This helps us learn policies from real-world transactions
which could be collected via safe automated policies or a human operator.

Offline RL [12] comes with its own set of challenges. At the heart of the issue is the limited amount
of data leading to an inability to do policy-evaluation for state-action pairs not covered within the
dataset. Thereby, algorithms can only learn an optimal policy with coverage within the dataset. For
unknown state-actions, we face extrapolation error that leads to erroneous value estimations for these
states. The learned policies often over-estimates the value of these unknown states which disrupts
policy improvement.

Objective. One of the primary solutions to the above problem involves restraining the policy learning
to the actions covered in the dataset. There are various methods that have been proposed for the
same issue: 1) KL control [8, 30] 2) Conservative Q Learning [11] 3) Behaviour constraint. In this
work, we study one such algorithm “TD3+BC" [4], which is a model-free algorithm for learning a



Figure 1: Schematic distinction between interactive RL and offline RL

control policy. This algorithm introduces a minimal change in the TD3 algorithm by introducing
a behavior cloning (BC) constraint on policy updates. In this work, we progressively implement
“TD3" [5], “BC", and then combine both of them to make “TD3+BC". Thereafter, we evaluate these
algorithms on a set of environments in the D4RL dataset [3]. We also supplement our evaluation of
this algorithm with a real-world application Cassie dataset.

2 Background

RL. We prelude discussion of our approach with a brief overview of Reinforcement Learning (RL)
[27]. RL involves performing a sequence of actions in an environment and maximizing the cumulative
return. The environment is defined by a Markov Decision Process (MDP) < S,A,R, δ, γ >,
indicating a finite state-space, finite action-space, bounded reward space, state-action transition
matrix, and discount factor respectively. Given a policy π, which is a mapping from state to action
selection distribution, we define the discounted return of a policy in state "s" after taking action "a" as

Qπ(s, a) = Eπ

[
t=∞∑
t=0

γtRt | S0 = s,At = a

]

Offline RL. In figure1 1, we describe the progression from online to offline reinforcement learning.
The primary assumption of on-policy RL [20] is the ability to interact with the environment to collect
data for policy improvement. In this case, the exploration policy used is just the policy being learned,
which is referred to as the target policy. This ensures that the coverage of the state-action space
required by the policy is available. However, this limits our exploration to the target policy itself.
In order to overcome this, we refer to off-policy RL, where the exploration policy and target policy
are independent of each other. A good exploration policy encourages sufficient state-action space
coverage for the off-policy updates.

In the case of offline RL, we no longer can interact with the environment and are limited to a fixed
dataset (D). This is typically the case for real-world applications.

3 Algorithms

In this section, we introduce TD3 and Behaviour Cloning (BC), which when put together form the
skeleton of the “TD3+BC" algorithm.

TD3. Twin Delayed DDPG (TD3) [5] is a model-free off-policy reinforcement learning algorithm
which addresses the instabilties in training of the DDPG [14] algorithm. It can be used for both
discrete as well as continuous action spaces. It introduces the following tricks:

1. Clipped Double-Q Learning. TD3 learns two Q-functions instead of one (hence “twin”),
and uses the smaller of the two Q-values to form the targets in the Bellman error loss
functions.

1This image is borrowed from [12]
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2. “Delayed” Policy Updates. TD3 updates the policy (and target networks) less frequently
than the Q-function.

3. Target Policy Smoothing. TD3 adds noise to the target action, to make it harder for the
policy to exploit Q-function errors by smoothing out Q values along changes in the action.

BC. Behaviour cloning (BC) is simply imitation learning to replicate the data collection policy. This
is particularly useful when an unknown expert policy is used for data collection and we need to
replicate it. BC helps us stick to the action distribution in the dataset, thereby reducing extrapolation
error during policy evaluation. It usually suffers when a collection of policies are used to collect a
dataset, which is difficult to model using unimodal policy distribution classes.

TD3+BC. The fundamental offline-rl difficulty of out of distribution actions requiring extrapolation
into the unknown state-action space can be addressed by regularizing the action selection via the KL
divergence with the behaviour policy. Though this has been shown to be useful, TD3+BC argues that
one can achieve a similar constaint in a much simplier manner by performing BC while learning a
model-free policy as done in TD3. We share the entire algorithm in [1] and highlight the key idea
over here. This algorithm involves only 2 minimal changes from the base TD3 algorithm:

1. Add a behaviour cloning regularization term while doing a TD3 policy update as shown in
eq. (1)

π = argmax
π

Es∼D [Q(s, π(s))]→ π = argmax
π

E(s,a)∼D

[
λQ(s, π(s))− (π(s)− a)2

]
.

(1)
2. Normalization of every state-feature (si) in the dataset as shown in eq. (2); where µi, σi,

ε are the mean, standard deviation of the ith state-feature across the dataset, and small
normalization constant respectively.

si =
si − µi
σi + ε

, (2)

Algorithm 1 TD3+BC
Initialize critic networks Qθ1 , Qθ2 , and actor network πφ with random parameters θ1, θ2, φ
Initialize target networks θ′1 ← θ1, θ′2 ← θ2, φ′ ← φ
Initialize replay buffer B
for t = 1 to T do

Select action with exploration noise a ∼ πφ(s) + ε,
ε ∼ N (0, σ) and observe reward r and new state s′
Store transition tuple (s, a, r, s′) in B
Sample mini-batch of N transitions (s, a, r, s′) from B
ã← πφ′(s′) + ε, ε ∼ clip(N (0, σ̃),−c, c)
y ← r + γmini=1,2Qθ′i(s

′, ã)

Update critics θi ← argminθi N
−1 ∑(y −Qθi(s, a))2

if t mod d then
Update φ by the deterministic policy gradient:
∇φJ(φ) = N−1

∑
∇a?λQθ1(s, a?)− (a? − a)2|a?=πφ(s)∇φπφ(s)

Update target networks:
θ′i ← τθi + (1− τ)θ′i
φ′ ← τφ+ (1− τ)φ′

end if
end for

4 Experiments

In this work, we want to ask ourselves 3 questions by replicating the TD3+BC algorithm:

• Is it possible to learn policies using offline datasets?
• What is the effect of different qualities of the dataset on offline learning?
• Does learning with real-world data eliminate the issue of sim-to-real transfer?
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4.1 Architecture & Implemenation Details.

In all our experiments, we use an actor-critic arcitecture where both actor and critic are seperate
networks, each having 2 fully-connected layers with ReLU intermediate activation function. Each
hidden-layer has 256 neurons. The last layer of the actor network has dimensions equivalent to the
cardinality of the action-space of an environmnet. The critic network receives the current state and
predicted action by the actor as an input. It has a unit neuron in the last layer predicting the q-value
corresponding to the input. Also, in “BC" experimenets, we only use the actor network. We use the
Adam optimizer [9] with learning rate of 0.0003 for the critic and 0.0001 for the actor. Also, we
use a discount factor (γ) of 0.99 in all the cases and report results over multiple runs for the above
hyper-parameters. We did not performed any hyper-parameter tuning in our case due to resource
constraints.

4.2 Synthetic Tasks: D4RL

Task Description. D4RL is a collection of synthetic environments [3] based on OpenAI gym [2]
and the MuJoCo physics simulator [28]. It provides a collection of varying qualities of datasets
for each of the environments. More information of these datasets can be found at https://sites.
google.com/view/d4rl/. For our work we will focus on just two of the included environments:

• Maze2D: A grid with 4 levels of complexity: 1) open 2) umaze 3) medium and 4) hard,
listed in the increasing order of complexity. The objective of the environment is to navigate
a 2d agent to a fixed goal location. The initial position of the 2d-agent is randomly placed
in the grid. We only have one kind of dataset for this environment which we refer as

“random-goal navigation". This dataset is generated by randomly navigating to different goal
locations in the maze. This leads to good coverage of the state and action space.

• Gym-Mujoco: This includes a collection of 3 classic control tasks in OpenAI gym: 1)
Half-Cheetah 2) Hopper and 3) Walker2d. These environments comprise of a single task of
maximizing the distance covered by the agent. 5 datasets of different qualities are provided
for each these environments. This includes a “random", “medium" and “expert" dataset
which comprises of trajectories generated by a random policy, medicore policy, and optimal
policy, respectively. There is also a “medium-replay" and “medium-expert" dataset which
comprises of medicore policy trajectories mixed with exploration data in a replay buffer and
expert trajectories, respectively.

Maze2d Analysis. We present our results for Maze2d environment in figure [4], having normalized
scores on the x-axis and update steps on the y-axis. We observe that "BC" tends to have the worst
performance in all maze configurations. This is primarly due to the nature of the dataset which
comprises of random navigation in the maze, producing random behaviour. Thus a deterministic
policy that learns to capture such random behaviour will not actually reach the goal very often. We
also obsereve “TD3" (also refered as TD3(offline) ) tends to perform fairly well compared to "BC".
This is primarly due to good coverage of state-action space in the “random-goal navigation" dataset,
leading to coveragance towards a “near-optimal" policy. In this case, the combination of “TD3+BC"
tends to hurt the converagence as the "BC" constraint will deviate the policy towards randomness.

Gym-Mujoco Analysis. We share our results for the ym-mujoco environments in figure [5]. Each
row belongs to a specific environment and each column belongs to a specific dataset quality. Begining
with "expert" quality dataset, we observe that “BC" tends to converage the fastest to the optimal
policy, as this is a dataset of optimal trajectories. “TD3+BC" also converages to the optimal behaviour

Figure 2: Gym-Mujoco Tasks Figure 3: Maze2d Tasks
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but tends to have a slow converagance. This is interesting and shows the importance of having
regularization(λ) over Q-values losses rather than an imitation loss as in eq (1). Also, “TD3(offline)"
tends to fail completely in this case due to limited state-action coverage. This primarly is due to over-
estimation issues for out-of-distribution states and actions which lead the learned policy to unknown
spaces where the behaviour is no longer defined. As we move from “medium" to “medium-replay"
dataset, we observe “TD3+BC" performing better than “BC". This is likely because “BC" tries to
imitate a worse medicore policy as we move from medium to medium-replay (which contains random
exploration data) and multi-modal policies are difficult to capture with a single deterministic policy.
Finally, we look at "random" dataset and find that all algorithms tend to perform poorly as compared
to earlier datasets. This is opposite to our observation in the “Maze2d" case as for “Gym-Mujoco" a
collection of random behaviour leads to coverage of only a small state and action space due to high
dimensionality of both the observation and action space.

Figure 4: Performance comparison of various algorithms 1) BC 2) TD3(offline) and 3) TD3+BC in
various maze-configurations of maze2d domain. There is only one kind of dataset in this case.

4.3 Real World: Cassie

Offline RL also presents some incredible potential benefits for robotic learning. Many research works
utilizing RL for robotic control use very sample inefficient on-policy gradient methods [21, 29, 25, 13].
As such, learning usually happens in simulation. However, this introduces what is known as the
“sim-to-real" gap, where errors in the simulation model cause learned policies to act differently
on hardware versus in simulation. There have been much research devoted to crossing this gap,
such as using dynamics randomization [18] or optimization of the estimated model parameters [1].

Figure 6: Simulator (left) and Real
(right) Bipedal Cassie Robot

Others try to sidestep the problem entirely by learning on
physical hardware [31, 7]. However, due to the sample
inefficiency of RL methods, gathering the large amount of
data required on hardware can be difficult or be extremely
expensive [6]. Offline RL presents a possible solution
to such limitations. Learning from a single static dataset
would dramatically reduce the number of samples required
while allowing for hardware learning to successfully real-
ize learned policies on hardware. In order to study such
an application, we introduce two kinds of datasets: a sim-
ulation dataset in order to evaluate the effectiveness of an
offline RL method for a locomotion task, and a hardware
dataset to evaluate if offline RL can learn a policy suitable
for hardware execution. Both datasets will be generated
with the same previously trained expert walking policy
capable of successful, robust walking up to 3.0 m/s.

Simulation Datasets: To collect the simulation dataset we sweep a range of walking speeds from
0 to 3.0 m/s and turning speeds from 0 to π

8 rad/s and collect 5 gait cycles for each command. To
further diversify the data, we collect trajectories where the robot is perturbed slightly by a small force
in varying directions. Note that the size of the perturbation force is small enough such the policy
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Figure 5: Performance comparison of various algorithms 1) BC 2) TD3(online) and 3) TD3+BC in
various gym-mujoco environments. Here, the x-axis shows the normalized score and the y-axis shows
the number of 100,000 updates-steps. For each environment, we evaluate over 5 kinds of datasets
corresponding to each column. Also, results are aggregated over 3 runs.

can resist it without falling down, but large enough to require a change in the gait to stabilize. This
ensures that we do not collect repeats of the same trajectory due to the cyclic nature of walking. This
simulation based dataset serves as our “easy" test case for learning a Cassie policy with TD3+BC.
Using simulation data also allow us to directly use true simulation and reward data.

Hardware Dataset: Opposed to this is the hardware version of the dataset. This data uses the same
policy and the same set of speed and turning commands to collect similar trajectories. However, since
this data is collected on hardware, the data is not ground truth and is the output of a state estimator.
This noise and error in the state data makes it more difficult for a policy to learn as it does not know
the true dynamics of how some action will affect the real state of the robot. Furthermore, in order
to perform offline RL, our offline dataset needs to have state, actions, and rewards. Unfortunately
further adding to the difficulties, there are some reward function components that we cannot measure
accurately on hardware. In simulation where the original expert policy is learned, we have access
to all ground truth information about the robot state. However, this is not true on hardware. For
example, as the foot lacks any force sensor, ground reaction force at the foot can only be roughly
estimated on the physical robot through deflection of the knee spring and does not provide an accurate
measurement. Global foot velocity is always required for our reward calculation, but requires some
grounding in the global frame like estimation of where the ground is, which can be difficult in
locomotion as contact is made and broken constantly with alternating feet. To successfully use this
dataset for offline RL we will have to work around this challenge.

Offline RL has begun to show success when applied to robotic control tasks [10, 19, 15, 17], and
several previous works attempt to solve this reward problem in a number of ways. For example, [32]
use unlabeled data to learn a reward function from which to perform offline RL on. This allows them
to use teleoperation demonstrations which have no pre-described reward value for learning. Due
to learning a reward function, this method proved to be more effective than just imitation learning.
Rather than just learning to copy the demonstration data, the policy will actually optimize some
(hopefully) meaningful reward function. Other works use a simple sparse reward for task completion
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to learn robotic skills [23]. Sinha et. al. [24] attempt to robustify offline RL by augmenting the
static dataset to improve out-of-distribution generalization. Such a technique could allow us to use
our inaccurate reward estimates on hardware while still learning a successfull policy. For ease and
simplicity, in our work we just use inaccurate measurements from the state estimator as reward
signals and hope that they are close enough to the true reward that the learned policy will reflected
the desired true motion.

Analysis. We share our results for cassie experiements in fig. [8]. In the case of simulator datasets,
Behaviour Cloning tends to recover functioning policies for “expert", “speed-only" and “sweep-half"
datasets. BC in the “turn-only" dataset has sub-optimal performance as the dataset only includes
standing and rotation around the same spot by the robot. Surprsingly, “TD3" and “TD3+BC" tend
to fail in all the cases, despite regularization being applied to the Q-value estimation in eq. (1). We
conjecture this due to a low amount of data and high dimensionality of the environment. Though we
have sub-optimal policies using "BC", we attempted to transfer them to the hardware and found them
to be very unstable and untransferable. Again, we believe that this is due to insufficient amount of
data leading to a very sensitive policy. If the policy does not start in a state it has seen before, it will
never stabilize and will quickly fail. This sensitivity is exacebated on hardware where sim-to-real
differences mean that the policy may never see an exact same state that it was trained on.

This encouraged us to simply train over the actual, but limited, hardware data and validate if this
would bridge the gap of the inaccurate simulator. Unfortunately, upon evaluation, we observed
learning on this dataset to not converage to a stable policy, probably due to the small amount of data.
We attempted to overcome this by inducing mixture of simulator data with the hardware data. Despite
this, none of the policies improved as shown in fig. 8 row 2 and row 3.

Figure 7: Performance Comparison of various algorithms 1) BC 2) TD3(offline) and 3) TD3+BC in
simulation datasets for cassie. In these case, evaluation was done in simulator itself.

Figure 8: Performance Comparison of various algorithms 1) BC 2) TD3(offline) and 3) TD3+BC in
hardware dataset (right) and "mixture of hardware data with simulator data" (right) for cassie.
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5 Summary

We investigated “BC", “TD3", and “TD3+BC" for offline reinforcement learning over various
environments and different qualities of datasets. Overall, we observed “BC" should be preferred
whenever we have expert to medium quality datasets, “TD3" should be used whenever we have
sufficiently large state-action space coverage, and finally, “TD3+BC" is an intermediatory to both of
them and should be preferred when we have medium quality dataset with small coverage. To our
surprise, limited data of the real-world is still a bottleneck for directly learning the policies with
offline RL algorithms. In the future, we would like to investigate data-augmentation and multi-quality
mixture of simulated datasets with the real-world dataset to see if it improves policy learning.

6 Task Division

In the following, we share the core responsibilities of each project member. At the same time, we
emphasize that each member collaboarted on different tasks of this project.

• Anurag: Implementation , evaluation and analysis with synthetic D4RL environments for
TD3 and TD3+BC.

• Jeremy: Collect, evaluate, and analyze real-word Cassie dataset with TD3+BC.
• Aseem: Collect, evaluate, and analyze simulation Cassie dataset with TD3+BC. He also

investigated CQL[11] algorithm a series of other algorithms results of which couldn’t be
shared due to computational constraints.

• Ramya: Implementation of Behavior Cloning and integration with TD3 to create TD3+BC.

Code for our project can be downloaded at https://drive.google.com/file/d/
1TCaQ70OPdi1NwMaS0mj7Pr1Vwf_kk6_D/view?usp=sharing
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