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Abstract

Agents need to explore the world intelligently so as to dis-
cover new skills that are useful to perform downstream tasks.
To perform exploration, there have been several methods that
have been introduced in literature – however they lack a one-
on-one comparison under the same policy setting. There is a
discrepancy in terms of whether a model-based or a model-
free policy is used to perform exploration and the choice of
policy can effect the sample-efficiency of the agent signifi-
cantly. In this project, we focus on implementing three explo-
ration methods in model-based reinforcement learning set-
ting and thoroughly investigate their qualitative and quan-
titative performance on the continuous control problem of
Point Maze. Our experiments show that while ensemble based
Plan2Explore (Sekar et al. 2020) performs the best, a naive
and simple method such as Monte Carlo Dropout can perform
on par with other exploration based methods.

Introduction
Reinforcement learning (RL) (Sutton and Barto 2018)
agents learn by trial and error where they execute an action
and obtain feedback from the environment in the form of
a scalar reward. However, in sparse-reward settings, where
immediate reward is unavailable and is only given to the
agent at the end of episode on accomplishing the task suc-
cessfully, a random exploration rarely leads the agent to suc-
cessful states. Hence, it is important to explore intelligently,
in a way that guides the agent cover the state space that
would eventually lead to a successful learning of task.

In this work, we elucidate how different exploration al-
gorithms measure uncertainty and quantify it as an intrinsic
(or exploration) reward for a model-based RL setting. The
particular choice of model-based agent is due to its sample-
efficiency (Hafner et al. 2019a, 2021, 2023).

Concretely, our contributions can be summarized as fol-
lows:

• We investigate three knowledge based exploration meth-
ods in the context of continuous control point maze task.

• We implement and perform qualitative and quantitative
experiments on Plan2Explore (Sekar et al. 2020), Curios-
ity (Pathak et al. 2017a), and Monte Carlo Dropout (Gal
and Ghahramani 2016).

• In our ablation study, we look at the best performing
methods (Plan2Explore) and ablate the number of en-
sembles to see its effect on exploration and downstream
tasks.

Related Works
Exploration (or) Intrinsic Motivation: Learning only via
an ϵ-greedy (Sutton and Barto 2018) method often tends the
agent to learn a sub-optimal policy and does not elicit in-
teresting behaviors that would achieve a higher reward. One
common regime is that of knowledge based exploration that
aims to explore based on the model’s prediction. For exam-
ple, curiosity based methods (Pathak et al. 2017a,b; Schmid-
huber 1991) aim to train a dynamics model that explores
by using the model prediction error. Similarly, Plan2Explore
(Sekar et al. 2020) aims to quantify the intrinsic reward us-
ing the variance of the prediction from ensembles that are
initialized with different weights. On similar lines, from a
theoretical lens, Monte Carlo dropout (Gal and Ghahramani
2016) was proposed as a simple approximation to Bayesian
inference where the weights of network were dropped out
randomly to create an ensemble of predictions to compute
uncertainty.

Another common line of work includes competence
based methods in which an explicit skill vector is learnt by
maximizing the mutual information between the encoded
observation (input state) and skill (Eysenbach et al. 2018;
Achiam et al. 2018).

Model Based RL: Model-Based RL from raw pixels
approximates a representation space by minimizing the
observation reconstruction loss. World Models (Ha and
Schmidhuber 2018) learn the dynamics of the environment
in a two-stage process to evolve linear controllers in
imagination. Dreamer (Hafner et al. 2019b) utilizes RSSM
(recurrent state-space model) to learn the dynamics model
via long term imagination. Dreamer involves three major
steps of learning dynamics from collected experience,
learning a policy via imagination, and collecting more data
based on the learned policy. We plan to use Dreamer as our
framework since it is the first model-based RL algorithm
that is competitive with the model-free algorithms on
robotics and Deepmind control tasks (Tassa et al. 2018).



Preliminaries
Problem Formulation
We pose our problem as an infinite-horizon Markov Deci-
sion Process (MDP) defined by a tuple (S,A, T ,R, γ, ρ0).
S represents the state space. A ∈ Rm is an m-dimensional
continuous action space, T : S × A → S is the transition
function, R : S → R is the reward function, γ ∈ [0, 1) is
the discount factor and ρ0 denotes the initial state distribu-
tion. The goal of the agent is to learn a policy π : S → A
that maximizes the expected sum of discounted rewards;
maxπ Eπ[

∑∞
t=1 γ

tR(st)].

World Model
We base our world model on the Recurrent State-Space
Model (RSSM) framework (Hafner et al.) which learns a re-
current world model with a d-dimensional latent variable z.
The RSSM model is derived from an evidence lower bound
on the likelihood of an observation sequence o1:T given ac-
tions a1:T . This results in a loss composed of two compo-
nents: a reconstruction term measuring how well observa-
tions (and rewards) can be predicted from the latent repre-
sentation and a KL divergence term keeping predicted latent
states near their corresponding real observation encoding.

More concretely, the world model is parameterized by ϕ
and consists of the following components:

Representation: zt ∼ qϕ(ht, ot)
Recurrent Model: ht = fϕ(zt−1, ht−1, at−1)
Dynamics: ẑt ∼ pϕ(ẑt|ht)
Reward: r̂t ∼ pϕ(r̂t|ht, zt)
Continuation Predictor: ĉt ∼ pϕ(ĉt|ht, zt)
Decoder: x̂t ∼ pϕ(x̂t|ht, zt)

(1)
where we use ∼ to denote the sampling operation. The con-
tinuation flag ct ∈ {0, 1} indicates whether the episode has
ended. Except for the input encoder network within qϕ, we
retain architectural choices from (Hafner et al. 2023) for the
other components.

Policy Learning
For the policy, we adopt the Actor-Critic framework (Konda
and Tsitsiklis 1999) similar to DreamerV3 (Hafner et al.
2023), which consists of a Critic network that predicts the
value at a given state and an Actor that predicts the action
distribution given a state.

Actor network: at ∼ πψ(at|zt)
Critic network: vψ(zt) ≈ Eq(.|zt)[

∑t+H
τ=t (γ

τ−trτ )]
(2)

The critic is learned by discrete regression (Hafner et al.
2023) using generalized λ-targets (Schulman et al. 2018).
We train the actor network to maximize the value func-
tion via dynamics back-propagation (Hafner et al. 2019a),
updating actor parameters using the gradients computed
through the world model. Further, we use Symlog Predic-
tions (Hafner et al. 2023) for the reward predictor and the
critic. Symlog is helpful in dealing with environments with

varying reward scales across different tasks. The overall
framework alternates between the world model training, pol-
icy training, and data collection using the most recent policy.

Exploration Methods
We consider three intrinsic motivation methods namely,
(a) Intrinsic Curiosity Module (Pathak et al. 2017a), (b)
Plan2Explore (Sekar et al. 2020), and (c) Monte Carlo
Dropout (Gal and Ghahramani 2016). In this section we
provide the details of each of the exploration models.

Curiosity Based exploration (Pathak et al. 2017a;
Schmidhuber 1991): One of the earliest exploration
models that operates on continuous controls was that of
curiosity based exploration. These set of methods aim to
discover new states of the world by trying to maximize
their dynamics model prediction error. Specifically, given a
state st and action at, the learned dynamics model predicts
the next state ˆst+1. The intrinsic reward is formulated
as the error between the ground truth and the prediction,
|st+1 − ˆst+1|. The higher this prediction error, the more
uncertain the agent is about the world.

Plan2Explore (Sekar et al. 2020): Plan2Explore is a
disagreement-based method to encourage the agent to learn
about uncertain state regions. Plan2Explore measures the
disagreement between an ensemble of dynamics models and
uses the variance of predictions as reward to learn an explo-
ration policy. The idea being if the variance is large, then
the agent is uncertain about the region and we would want it
to explore more in that region. It maintains an ensemble of
N dynamic models and use disagreement (variance) among
them as an intrinsic reward for exploration. Concretely,
all the ensemble models take in the same state-action pair
(s, a) as the input and predict the next state’s representation
{snt+1}Nn=1. The idea being if all the models predict the
next state accurately, the disagreement would be 0 and
hence the reward would be 0. This formulation encourages
the agent to explore regions that have more uncertainty i.e
maximizing the variance of the predictions.

MC Dropout
Dropout was introduced as a method to prevent over-

fitting in deep neural networks(Srivastava et al. 2014). It
works by blocking out random units and their connections
during training to prevent co-adaptation of units. Dropout is
traditionally applied only during training. Gal and Ghahra-
mani proposed that using dropout during evaluation can be
a viable alternative to ensemble methods for constructing
confidence intervals for uncertainty estimation by dropping
different units during inference and getting different predic-
tions as a consequence.

We summarize the intrinsic reward formulation of the
three methods in Table 1.

Experiments
In this section we answer the following question: 1) How
well does the exploration cover the state space qualitatively



Table 1: Knowledge based exploration algorithms and their reward formulation.

Name Intrinsic Reward
Curiosity (Pathak et al. 2017a) ∥fdyn( ˆst+1|st, at)− st+1∥2
Disagreement (Sekar et al. 2020) Var{f idyn(( ˆst+1|st, at)− st+1)} i = 1, . . . , N

MC-Dropout (Gal and Ghahramani 2016) Var{Dropout(fdyn)
i(( ˆst+1|st, at)− st+1)} i = 1, . . . , N

for each of the three models? 2) Which exploration strategy
learns general skills that can be deployed to the downstream
task? 3) Does having higher number of ensembles for the
disagreement reward help? We first look into the environ-
ment used and then delve into the results.

Point Maze
We run our experiments on Point Maze (Fu et al. 2021).
The task in the environment is designed for a 2-Degree-of-
Freedom green ball that is force-actuated in the Cartesian di-
rections x and y, to reach a target red goal in a closed maze.
We test our models in three different settings with increasing
levels of complexity: small, medium and large maze, which
are illustrated in Figure 1. Observation space consists of 4
keys (x, y, vx, vy): coordinates (x, y) of the ball and linear
velocities in according to x, y: (vx, vy). Action space is the
linear force (motorx,motory) exerted on the ball in the x
and y direction. The rewards of this environment can be ini-
tialized as sparse or dense. In case of dense reward, the re-
turned reward is the negative Euclidean distance between the
achieved goal position and the desired goal. Meanwhile, the
sparse reward is 0 if the ball hasn’t reached the final desti-
nation, and 1 if it is within 0.5m to the final goal in terms
of Euclidean distance. To test the exploration, we opt for the
sparse reward setting in the first 2e5 steps and use the dense
reward for the rest of the task.

We run all the above methods namely Curiosity,
Plan2Explore (P2E), and MC-Dropout within the codebase
of DreamerV3 (https://github.com/NM512/dreamerv3 torch
2023).

Results & Discussion
In this section we present first the qualitative evaluation and
then present the quantitative evaluation of the three methods
on a downstream task. Further we perform ablation study by
varying the number of ensembles.

Qualitative Evaluation
First, we qualitatively evaluate the results of the three meth-
ods for different maze size (small, medium, and large). As
shown in Figure 2, we observe that in terms of state space
coverage, Plan2Explore performs the best. This is poten-
tially due to the disagreement objective coming from dif-
ferent ensembles. It is interesting that these ensembles do
not collapse into a single mode and that is because they are
initialized with different weights.

More interestingly, we find that an incredibly simple tech-
nique such as Monte Carlo Dropout performs similar to cu-
riosity based exploration.

(a) Small Maze (b) Medium Maze

(c) Large Maze

Figure 1: Maze Environments of varying complexities
(small, medium, large) for studying exploration strategies in
deep model-based reinforcement learning.
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Figure 2: Visualization on Medium point maze depicting the state space ((x, y) coordinates) coverage of different exploration
methods. Plan2Explore performs the best, but interestingly a simple method such as MC Dropout works equally well as Cu-
riosity based methods. Blue dots means that the states were explored earlier in the training process and Yellow dots means that
the states were explored later in the training process. Best seen in color.

Quantitative Evaluation
To further look at how each exploration method performs on
Medium Maze, we quantitatively evaluate the three meth-
ods by first exploring for 2e5 steps and then adding in the
task specific reward of reaching the red goal. Based on the
plot in Figure 3, we observe that Plan2Explore performs the
best – potentially because of higher state space coverage (as
shown in Figure 2). Interesting, even in the quantitative as-
sessment, we find that MC-Dropout (Gal and Ghahramani
2016) to perform on par with Curiosity based exploration
(Pathak et al. 2017a).

Effect of the number of ensembles (N )
We also investigate the effect of the number of ensembles
for Plan2Explore by experimenting with N = {2, 5} and
find that the higher ensembles lead to better downstream task
performance as shown in Figure 4. The reason why a lesser
number of ensembles perform poorer is that disagreement
captures the uncertainty between the N dynamics models,
and the lesser the number of models, the poorer the level of
uncertainty in the variance. We did not find any significant

increase in performance beyond N = 5.

Codebase and Implementation Details
In this work, we have used the existing codebase
for Dreamer (https://github.com/NM512/dreamerv3 torch
2023). We have added the disagreement (Sekar et al. 2020),
curiosity (Pathak et al. 2017a) and MC-Dropout (Gal and
Ghahramani 2016) code in exploration.py. See the
shared code for more details.

Limitations and Future work
Our work has the following limitations.

• We did not consider competence based methods such as
DIAYN (Eysenbach et al. 2018) and other mutual infor-
mation methods based on DIAYN formulation and leave
that as a future work.

• Although challenging, we only considered maze like en-
vironments. It would be interesting to see a thorough in-
vestigation of these methods more complex locomotion
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Figure 3: Quantitative analysis of exploration for 2e5 steps
and addition of task reward in the RL objective from 2e5 -
5e5 steps. The plots show that Plan2Explore (Sekar et al.
2020) achieves better task performance due to its higher
state space coverage.
. The x axis represents the number of steps executed and the

y axis represents the average cumulative reward.
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Figure 4: Quantitative analysis with different ensemble size
on Plan2Explore for 2e5 steps and addition of task reward
in the RL objective from 2e5 - 5e5 steps. The plot shows
that higher number of ensembles is typically preferred. We
did not find any significant increase in performance beyond
N=5. The x axis represents the number of steps executed and
the y axis represents the average cumulative reward.

tasks such as DM Control (Tassa et al. 2018) which have
much larger state and action spaces.

Conclusion
In this project, we investigate three different exploration
methods for model-based RL in the continuous control prob-
lem of Point Maze: 1) Plan2Explore (Sekar et al. 2020), 2)
Curiosity Based exploration (Pathak et al. 2017b; Schmid-
huber 1991) and 3) Monte-Carlo Dropout (Gal and Ghahra-
mani 2016). Our experiments show that Plan2Explore per-
forms the best in task performance. Additionally, we show
that Monte Carlo Dropout serves as a strong baseline which
is easy to implement and is relatively inexpensive computa-
tionally. We show that just 5 ensemble members can be used
to obtain reliable uncertainty estimates for the downstream
task of exploration in model-based RL.
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